Receptor-Based Modeling and 3D-QSAR for a Quantitative Production of the Butyrylcholinesterase Inhibitors Based on Genetic Algorithm

نویسندگان

  • Zaheer-ul-Haq
  • Reaz Uddin
  • Hongbin Yuan
  • Pavel A. Petukhov
  • Mohammad Iqbal Choudhary
  • Jeffry D. Madura
چکیده

Three-dimensional quantitative structure-activity relationship (3D-QSAR) models have been constructed using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) for a series of structurally related steroidal alkaloids as butyrylcholinesterase (BuChE) inhibitors. Docking studies were employed to position the inhibitors into the BuChE active site to determine the most probable binding mode. The strategy was to explore multiple inhibitor conformations in producing a more reliable 3D-QSAR model. These multiple conformations were derived using the FlexS program. The conformation selection step for CoMFA was done by genetic algorithm. The genetic algorithm based CoMFA approach was found to be the best. Both CoMFA and CoMSIA yielded significant cross-validated q(2) values of 0.701 and 0.627 and the r(2) values of 0.979 and 0.982, respectively. These statistically significant models were validated by a test set of five compounds. Comparison of CoMFA and CoMSIA contour maps helped to identify structural requirements for the inhibitors and serves as a basis for the design of the next generation of the inhibitor analogues. The results demonstrate that the combination of ligand-based and receptor-based modeling with use of a genetic algorithm is a powerful approach to build 3D-QSAR models. These data can be used for the lead optimization process with respect to inhibition enhancement which is important for the drug discovery and development for Alzheimer's disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative structure-activity relationship (QSAR) study of CCR2b receptor inhibitors using SW-MLR and GA-MLR approaches

In this paper, the quantitative structure activity-relationship (QSAR) of the CCR2b receptor inhibitors was scrutinized. Firstly, the molecular descriptors were calculated using the Dragon package. Then, the stepwise multiple linear regressions (SW-MLR) and the genetic algorithm multiple linear regressions (GA-MLR) variable selection methods were subsequently employed to select and implement th...

متن کامل

QSAR, Docking and Molecular Dynamics Studies on the Piperidone-grafted Mono- and Bis-spiro-oxindole-hexahydropyrrolizines as Potent Butyrylcholinesterase Inhibitors

ABSTRACT: Quantitative structure-activity relationship (QSAR) study on the piperidone-grafted mono- and bis-spirooxindole-hexahydropyrrolizines as potent butyrylcholinestrase (BuChE) inhibitors were carried out using statistical methods, molecular dynamics and molecular docking simulation. QSAR methodologies, including classification and regression tree (CART), multiple linear regression (MLR),...

متن کامل

Comparison of Different 2D and 3D-QSAR Methods on Activity Prediction of Histamine H3 Receptor Antagonists

     Histamine H3 receptor subtype has been the target of several recent drug development programs. Quantitative structure-activity relationship (QSAR) methods are used to predict the pharmaceutically relevant properties of drug candidates whenever it is applicable. The aim of this study was to compare the predictive powers of three different QSAR techniques, namely, multiple linear regression ...

متن کامل

Comparison of Different 2D and 3D-QSAR Methods on Activity Prediction of Histamine H3 Receptor Antagonists

     Histamine H3 receptor subtype has been the target of several recent drug development programs. Quantitative structure-activity relationship (QSAR) methods are used to predict the pharmaceutically relevant properties of drug candidates whenever it is applicable. The aim of this study was to compare the predictive powers of three different QSAR techniques, namely, multiple linear regression ...

متن کامل

QSAR Study of 17β-HSD3 Inhibitors by Genetic Algorithm-Support Vector Machine as a Target Receptor for the Treatment of Prostate Cancer

The 17β-HSD3 enzyme plays a key role in treatment of prostate cancer and small inhibitorscan be used to efficiently target it. In the present study, the multiple linear regression (MLR),and support vector machine (SVM) methods were used to interpret the chemical structuralfunctionality against the inhibition activity of some 17β-HSD3inhibitors. Chemical structuralinformation were described thro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chemical information and modeling

دوره 48 5  شماره 

صفحات  -

تاریخ انتشار 2008